Frank-Wolfe with Subsampling Oracle

نویسندگان

  • Thomas Kerdreux
  • Fabian Pedregosa
  • Alexandre d'Aspremont
چکیده

We analyze two novel randomized variants of the Frank-Wolfe (FW) or conditional gradient algorithm. While classical FW algorithms require solving a linear minimization problem over the domain at each iteration, the proposedmethod only requires to solve a linear minimization problem over a small subset of the original domain. The first algorithm that we propose is a randomized variant of the original FW algorithm and achieves a O(1/t) sublinear convergence rate as in the deterministic counterpart. The second algorithm is a randomized variant of the Away-step FW algorithm, and again as its deterministic counterpart, reaches linear (i.e., exponential) convergence rate making it the first provably convergent randomized variant of Away-step FW. In both cases, while subsampling reduces the convergence rate by a constant factor, the linear minimization step can be a fraction of the cost of that of the deterministic versions, especially when the data is streamed. We illustrate computational gains of the algorithms on regression problems, involving both l1 and latent group lasso penalties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lazifying Conditional Gradient Algorithms

Conditional gradient algorithms (also often called Frank-Wolfe algorithms) are popular due to their simplicity of only requiring a linear optimization oracle and more recently they also gained significant traction for online learning. While simple in principle, in many cases the actual implementation of the linear optimization oracle is costly. We show a general method to lazify various conditi...

متن کامل

Partial Linearization Based Optimization for Multi-class SVM

We propose a novel partial linearization based approach for optimizing the multi-class svm learning problem. Our method is an intuitive generalization of the Frank-Wolfe and the exponentiated gradient algorithms. In particular, it allows us to combine several of their desirable qualities into one approach: (i) the use of an expectation oracle (which provides the marginals over each output class...

متن کامل

Frank-Wolfe Algorithms for Saddle Point Problems

We extend the Frank-Wolfe (FW) optimization algorithm to solve constrained smooth convex-concave saddle point (SP) problems. Remarkably, the method only requires access to linear minimization oracles. Leveraging recent advances in FW optimization, we provide the first proof of convergence of a FW-type saddle point solver over polytopes, thereby partially answering a 30 year-old conjecture. We a...

متن کامل

Minding the Gaps for Block Frank-Wolfe Optimization of Structured SVMs

In this paper, we propose several improvements on the block-coordinate Frank-Wolfe (BCFW) algorithm from Lacoste-Julien et al. (2013) recently used to optimize the structured support vector machine (SSVM) objective in the context of structured prediction, though it has wider applications. The key intuition behind our improvements is that the estimates of block gaps maintained by BCFW reveal the...

متن کامل

On the Global Linear Convergence of Frank-Wolfe Optimization Variants

The Frank-Wolfe (FW) optimization algorithm has lately re-gained popularity thanks in particular to its ability to nicely handle the structured constraints appearing in machine learning applications. However, its convergence rate is known to be slow (sublinear) when the solution lies at the boundary. A simple lessknown fix is to add the possibility to take ‘away steps’ during optimization, an o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018